计算∫∫(x^2+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/03 11:52:04
计算∫∫(x^2+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧

计算∫∫(x^2+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧
计算∫∫(x^2+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧

计算∫∫(x^2+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧
用两类积分的转换:
∫∫Σ (x^2 + y^2)dzdx + zdxdy
= ∫∫Σ [ (x^2 + y^2) * |cosβ|/|cosα| + z ] dxdy
= - ∫∫D [ (x^2 + y^2) * - y/√(x^2 + y^2) + √(x^2 + y^) ] dxdy
= ∫∫D [ (x^2 + y^2)y - (x^2 + y^2) ]/√(x^2 + y^2) dxdy
= ∫∫(0,π/2) dθ ∫(0,1) (r^3 * sinθ - r^2)/r * r dr
= 1/4 - π/6
用向量点积法:
∫∫Σ (x^2 + y^2)dzdx + zdxdy
= - ∫∫D [ - 0 - (x^2 + y^2) * y/√(x^2 + y^2) + √(x^2 + y^2) ] dxdy
= ∫∫D [ (x^2 + y^2)y - (x^2 + y^2) ]/√(x^2 + y^2) dxdy
= ∫(0,π/2) dθ ∫(0,1) (r^3 * sinθ - r^2)/r * r dr
= 1/4 - π/6
本题不太推荐高斯公式法,但可以作为对比:
取Σ:z = √(x² + y²)的下侧
取Σ1:z = 1的上侧
取Σ2:x = 0的左侧
取Σ3:y = 0的后侧
∫∫(Σ+Σ1+Σ2+Σ3) (x^2 + y^2)dzdx + zdxdy
= ∫∫∫Ω [ 0 + 2y + 1 ] dxdydz
= ∫∫∫Ω (2y + 1) dxdydz
= ∫(0,π/2) dθ ∫(0,1) r dr ∫(r,1) (2 * rsinθ + 1) dz
= ∫(0,π/2) dθ ∫(0,1) r * (2 * rsinθ + 1) * (1 - r) dr
= (π + 2)/12
∫∫Σ1 (x^2 + y^2)dzdx + zdxdy
= ∫∫D dxdy
= 1/4π * 1² = π/4
∫∫Σ2 (x^2 + y^2)dzdx + zdxdy
= 0
∫∫Σ3 (x^2 + y^2)dzdx + zdxdy
= ∫∫Σ3 x^2 dzdx
= - ∫∫D x^2 dzdx、D:z = x
= - ∫(0,1) dx ∫(x,1) x^2 dz
= - 1/12
于是∫∫Σ + ∫∫Σ1 + ∫∫Σ2 + ∫∫Σ3 = ∫∫(Σ+Σ1+Σ2+Σ3)
从而∫∫Σ = π/12 + 1/6 - π/4 - (- 1/12)
= 1/4 - π/6

计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧 计算∫∫2xz^2dydz+y(z^2+1)dzdx+(2-z^3)dxdy,其中∑是曲面z=x2+y^2(0计算∫∫2xz^2dydz+y(z^2+1)dzdx+(2-z^3)dxdy,其中∑是曲面z=x^2+y^2(0 计算I=∫∫x(1+x^2z)dydz+y(1-x^2z)dzdx+z(1-x^2z)dxdy其中∑为曲面z=√x^2+y^2(0 计算曲面积分I=∫∫(x^3z+x+z)dydz-(x^2yz+x)dzdx-(x^2z^2+2z)dzdx,其中∑为曲面z=1-x^2-y^2(z≥0)上侧 关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥面z=√x^2+y^2介于0 计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2+y^2) (0 计算:I=∫∫(S+)x^3dydz+y^3dzdx+z^3dxdy,其中S+为椭球面x^2/a^2+y^2/b^2+z^2/c^2的外侧 计算曲面积分∫∫ 2x z^2 dydz + y(z^2+1) dzdx +9z3 dxdy其中曲面为z=x^2+y^2+1 (1 计算∫∫(x^2+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧 计算∫∫(x+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧用普通方法,不要高斯. 计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与平面z=0,Z=1所围外侧 计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧 计算∫∫ (2x+8z)dydz+(xy-xz)dzdx+(yz+2z)dxdy其中是由x^2+y^2=4及平面z=1,z=2所围成立体的表面,取内侧 ∫∫x^2dydz+y^2dzdx+z^2dxdy,其中曲面为x^2+y^2+z^2=1的上半部分外侧 曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧 ∫∫∑(xz^2+1)dydz+(yx^2+2)dzdx+(zy^2+3)dxdy,其中,∑是锥面z=√x^2+y^2(0 计算∫∫∫(∑)x^3dydz+y^3dzdx+z^3dxdy ,其中∑为球面x^2+y^2+z^2=a^2的内侧.我做到∫∫∫(∑){x^3+Y^3+Z^3}dxdydz就不知道怎么算了 计算(二重积分)xy^2dydz+yz^2dzdx+zx^2dxdy 范围为上半球面z=根号1-x^2-y^2的上侧