设f(x)在(-∞,+∞)内连续,且f(x)>0,证明F(x)=[∫(0-x)tf(t)dt]/[∫(0-x)f(t)dt]在(0,+∞)单调增加∫(0-x)表示下标为0 上标为x,

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/18 04:32:49
设f(x)在(-∞,+∞)内连续,且f(x)>0,证明F(x)=[∫(0-x)tf(t)dt]/[∫(0-x)f(t)dt]在(0,+∞)单调增加∫(0-x)表示下标为0 上标为x,

设f(x)在(-∞,+∞)内连续,且f(x)>0,证明F(x)=[∫(0-x)tf(t)dt]/[∫(0-x)f(t)dt]在(0,+∞)单调增加∫(0-x)表示下标为0 上标为x,
设f(x)在(-∞,+∞)内连续,且f(x)>0,证明F(x)=[∫(0-x)tf(t)dt]/[∫(0-x)f(t)dt]在(0,+∞)单调增加
∫(0-x)表示下标为0 上标为x,

设f(x)在(-∞,+∞)内连续,且f(x)>0,证明F(x)=[∫(0-x)tf(t)dt]/[∫(0-x)f(t)dt]在(0,+∞)单调增加∫(0-x)表示下标为0 上标为x,
此问题的核心是求该函数的导数,然后证明其导数大于0(我想难点可能在导数分析上).
对F(x)关于x求导



对F(x)的表达式, 可知其分母大于0, 对其分子项进行分析, f(x)是大于零的,由因为积分项里面x>t,故积分项也是大于零的,故



从而证得F(x)>0.亦即F(x)在区间(0,+\infty)是单调递增的.

设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0,求证F(x)在(a,+∞)内单调递增. 设f(x)在(0,+∞)内连续,且f(1)=0,f(x)=xe^-x+1/x∫(x,0)f(t)dt,则f(x)= 设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0 设函数f(x)在(﹣∞,﹢∞)内连续,且f[f(x)]=x,证明在(﹣∞,﹢∞)内至少有一个x0满足f(x0)=x0 证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界. 设f(x)在(-∞,+∞)内连续,F(x)=∫(x-2t)f(t)dt (这个积分区间是0到x),且f(x)是单调见函数,证明:F(x)是单调增函数 设f(x)在(-∞,+∞)内连续,且f(x)>0,证明F(x)=[∫(0-x)tf(t)dt]/[∫(0-x)f(t)dt]在(0,+∞)单调增加∫(0-x)表示下标为0 上标为x, 证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续. 介值定理推论的证明设f(x)在[a,b]内连续,且f(a)*f(b) 设函数f(x)在(-∞,+∞)内可导,f(x)的导数等于f(x),且f(0)=1,证明在(-∞,+∞)内f(x)=e∨x 关于间断点的选择题 设函数 f(x) 和 φ(x) 都在(-∞,+∞) 内有定义 f(x)连续 且f(x)≠0 φ(x)有断点设函数 f(x) 和 φ(x) 都在(-∞,+∞) 内有定义 f(x)连续 且f(x)≠0 φ(x)有断点 那么A. φ(f(x)) 必有间断点B. 设f(x)在[0,∞)上连续,且当x>0时,0 设f(x)在区间[0,+∞)上连续,且当x>0时,0 设f(x)在点x=o的某一邻域内具有连续的二阶导数,且lim(x->0)f(x)/x=0,证明:级数∑(n=1,∞)f(1/n)绝对收敛 设f(x)在(-∞,+∞)内有定义,证明:f(x)+f(-x)为偶函数,而f(x)-f(-x)为奇函数. 设f(x)在[0,1]内连续递减 0 设函数f(x)在(a,b)内连续,且f(a+),f(b-)存在,证明:函数f(x)在(a,b)内有界. 一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(x)=?设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x) ∫(0,1) f(x)dx ,则f(x)=