如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.(Ⅰ)试证:A

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 22:01:02
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.(Ⅰ)试证:A

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.(Ⅰ)试证:A
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:AB⊥平面BEF;
(Ⅱ)设PA=k•AB,且二面角E-BD-C的平面角大于45°,求k的取值范围.
用几何的方法解第二问,不能用空间向量的啊。

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.(Ⅰ)试证:A
(Ⅰ)证:由已知DF∥AB且∠DAD为直角,
故ABFD是矩形,从而AB⊥BF.
又PA⊥底面ABCD,
所以平面PAD⊥平面ABCD,
因为AB⊥AD,故AB⊥平面PAD,
所以AB⊥PD,
在△PDC内,E、F分别是PC、CD的中点,EF∥PD,所以AB⊥EF.
由此得AB⊥平面BEF.
(Ⅱ)以A为原点,以AB、AD、AP为OX、OY、OZ正向建立空间直角坐标系,
设AB的长为1,则BD=(-1,2,0),BE=(0,1 k2)
设平面CDB的法向量为 m1¯=(0,0,1),平面EDB的法向量为 m2¯=(x,y,z),
则 {m2¯•BD¯=0m2¯•BE¯=0
∴ {-x+2y=0y+kz2=0,取y=1,可得 m2=(2,1,-2k)
设二面角E-BD-C的大小为θ,
则cosθ=|cos<m1,m2>|═ 2k22+1+4k2<22
化简得 k2>45,则 k>255.

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点, 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2√2,PA=2,建立空间直角坐标系如何求E点的坐标, 在底面为正方形的四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=2,则四棱锥P-ABCD的体积为 如图,在底面是矩形的四棱锥P-ABCD中,PA⊥面ABCD,E,F分别为PD,AB的中点,且PA=AB=1,BC=2.求四棱锥E-ABCD的体积 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,指出图中有哪些是直角三角形 如图,在四棱锥P-ABCD中,PA=AB=AD=1,四边形ABCD是正方形,PA⊥平面ABCD,求四棱锥的表面积 如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BD,PA的中点,PA=AB=2 如图,在四棱锥P-ABCD中,底面为直角梯形,AD‖BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=如图,在四棱锥P-ABCD中,底面为直角梯形,AD‖BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.求(1)四棱 如图,在四棱锥P一ABCD中,底面ABCD是菱形,PA垂直ABcD,M为PD的中点1求证PB 如图,在正四棱锥P-ABCD中,PA=2,侧棱PA与底面所成角为60度,求它的体积 在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥平面ABCD,AB=根号3 在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,指出哪些三角形是直角三角形? 如图,在底面是矩形的四棱锥 P-ABCD 中,PA⊥底面 ABCD,PA=AB=1,BC=2,(如图,在底面是矩形的四棱锥 P-ABCD 中,PA⊥底面 ABCD,PA=AB=1,BC=2,(1)求证:平面 PDC⊥平面 PAD;(2)若 E 是 PD 的中点,求异面 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.当平面PBC⊥面PDC时,求PA长 如图,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=AD=a,又M,N分别是AB,PC的中点,求证平面PMC⊥平面PCD 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA垂直平面ABCD,PA=AD.M为AB的中点.求证:平面PMC⊥平面PCD 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°,若PA=AB,求二面角A-PD-B的余弦值. 如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB‖DC,AB⊥BC,PA=AB=BC,点E在棱PB上,PE=2E1.求证:平面PAB⊥平面PCB;2.求证:PD‖平面EAC.如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD。底面ABCD为梯形,A 如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°